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Machine Learning Enhanced Self-Charging Power Sources

Rui Gu, Liang Wei, Nuo Xu, Yao Xiong, Qijun Sun,* and Zhong Lin Wang*

The widespread deployment of Internet of Things (IoT) networks has actualized
omnipresent device interconnectivity. Despite technological advancements,
IoT edge devices suffer persistent energy bottlenecks from suboptimal
coordination of power acquisition and adaptive management. Self-charging
power sources (SCPS) aim to achieve autonomous operation through
monolithic integration of three core components: energy harvesters, power
management circuits, and supercapacitors/batteries. These devices enable
continuous ambient energy harvesting, providing uninterrupted power supply
for wearable electronics and IoT applications. Nevertheless, material selection
and component design remain key challenges in SCPS development. As
an essential artificial intelligence paradigm, machine learning (ML) enables
data-driven material and structural design based on historical experimental
datasets, thereby elevating SCPS performance to superior level. This paper
reviews the development of SCPSs and the application of ML in SCPSs, with
a particular focus on SCPSs with triboelectric nanogenerators (TENGs) and
supercapacitors (SCs). A generalized ML workflow with suggested parameters
is proposed to guide the performance prediction of TENG by incorporating pre-
vious theoretical research. Additionally, ML-guided design of carbon-based
SC materials and computer-aided suppression of self-discharge performance
are selected as typical examples to discuss. The combination of ML and SCPS
is expected to push forward more efficient and self-sufficient IoT applications.

1. Introduction

The rapid advancement of the Internet of Things (IoT)[1] and
the ubiquity of wearable devices[2] have led to a proliferation of
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sensor networks distributed in various envi-
ronments. These sensors, ranging from ur-
ban infrastructure to personal health mon-
itoring applications, necessitate a reliable
power supply for uninterrupted surveil-
lance and data transmission. However, in-
herent limitations of batteries, such as
restricted cycle life, protracted charging
times, and environmental concerns arising
from subsequent recycling, pose significant
obstacles to the holistic development of the
entire IoT system. Taking these factors into
account, SCPS can harvest ambient energy
and simultaneously charge energy-storage
devices, offering a promising solution that
can potentially eliminate the need for an
external power source. SCPS represents an
advanced technology dedicated to the collec-
tion, storage, management, and application
of energy.
The concept of self-powered system and

self-charging nanotechnology was first pro-
posed by Prof. Wang in 2008,[3] empha-
sizing the integration of energy collec-
tion, storage, management, and applica-
tion into a singular system to attain self-
sufficiency. The inaugural study on a self-
charging system was based on piezoelectric

nanogenerators (PENGs). Subsequently, in 2010, Zhu et al.[4] de-
signed a self-powered nanosystem that stored PENG energy into
commercial capacitors through the utilization of a bridge recti-
fier. In 2011, Bae et al.[5] expanded upon the SCPS concept by in-
tegrating energy-harvesting PENGwith supercapacitors, employ-
ing ZnO nanowires and graphene as foundational materials. Fol-
lowing the introduction of triboelectric nanogenerator (TENG),[6]

SCPS based on TENG witnessed rapid advancement in various
forms. For instance, Xiao et al.[7] have developed an SCPS utiliz-
ing fiber capacitors as energy storage devices, with TENG serving
as the energy harvesting device.
SCPSs integrate critical components of energy harvesting,

power management, and efficient energy storage, enabling
them to provide uninterrupted power supply for wearable
electronics and IoT applications instead of additional battery
replacement.[8,9] The system’s core elements are the energy-
harvesting components and the energy-storage units. Numer-
ous energy-harvesting devices have been investigated in SCPS
studies, including solar cells,[10] TENG,[11] thermoelectric gener-
ators (TEG),[12] and PENG.[13] These technologies have their own
distinct advantages and adaptability. Solar cells operate through
solid-state photon-to-electron conversion, where semiconductor
junctions generate electron-hole pairs upon absorbing photon
energy. This mechanism achieves benchmark power conversion
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efficiencies that significantly surpass those of mechanical-to-
electrical conversion systems and thermal gradient harvesters.
For instance, the efficiency of the double-junction tandem so-
lar cell developed by Liu et al. has reached 33.89%,[14] surpass-
ing the single-junction Shockley–Queisser limit of 33.7% for the
first time. TEG works based on the Seebeck or the Soret effect,
where thermoelectric materials generate voltage in response to
temperature gradients. The advantage of TEG lies in the absence
of internal moving parts, long service life, noiseless and stable
operation. The dimensionless figure of merit (ZT) serves as the
primarymetric for assessing thermoelectricmaterials, with state-
of-the-art materials attaining ZT values between 2 and 3.[15–17]

PENG converts applied mechanical stress into electrical energy
through the piezoelectric effect. When mechanical stress is ap-
plied to non-centrosymmetric piezoelectric materials, the stress
induces a change in the direction of polarization, leading to the
generation of a potential difference. This potential difference
drives alternating current (AC) in the external circuit. TENG can
also convert mechanical energy into electrical energy based on
the triboelectric effect, which is the coupling of contact electri-
fication and electrostatic induction. PENG and TENG both have
the characteristics of multiple structural designs, strong environ-
mental adaptability and robustness.[18] In addition, TENG also
has a wide range of material options, low manufacturing costs,
and more flexible structural designs. These advantages make it
highly suitable for SCPS applications in IoT. Traditional chem-
ical batteries and supercapacitors (SC) are frequently employed
as energy storage modules in SCPS. Compared to traditional bat-
teries, SC offers superior charge-discharge rates, extended cycle
life, superior environmental stability, and enhanced safety. These
benefits make SC more compatible with TENG in SCPS, par-
ticularly in situations that necessitate frequent charge–discharge
or require the rapid delivery of substantial energy within a brief
timeframe.
In the context of SCPS, the collaborative operation amongmul-

tiple components involves diverse device principles and com-
plex structural design. This complexity poses substantial chal-
lenges for enhancing the system’s sustainability and energy con-
version efficiency. Traditional research methodologies predom-
inantly employ experimental approaches to address these chal-
lenges, but they often fall short in handling tasks associated
with complexity and diversity due to their time-consuming and
resources-intensive nature. Consequently, there is an imperative
need for a more efficient and streamlined approach to expedite
the development and enhancement of SCPS components and
overall performance. Machine learning (ML) has emerged as a
pivotal technology capable of aiding in the design of SCPS, offer-
ing cost reduction and enhanced system sustainability.
This work provides a systematic review on the most recent

advancements in SCPS, specifically those based on TENG and
SC. It also encapsulates the current status of ML-assisted design
optimization for energy harvesting/storage devices, as depicted
schematically in Figure 1. In light of the scarcity of research on
ML-assisted TENG performance optimization, this paper sum-
marizes a universally applicable ML workflow and some key pa-
rameters for TENG performance optimization that can serve as
a reference for device design. The discussion concludes with a
forecast of future prospects and challenges associated with the
use of ML to assist in the design of SCPS.

2. Self-Charging Power Source

TENG has garnered significant interest from the scientific com-
munity due to their capacity to harvest a variety of previously over-
looked mechanical energy resources from the surroundings.[19]

The potential of TENG is remarkable, attributed to its high
output, cost-effectiveness, and eco-friendly characteristics. Con-
sequently, research on this technology has surged in recent
years.[20] However, the output signal of TENG is an alternating
current (AC), which cannot be directly stored like conventional
energy-harvesting systems. It necessitates initial connection to
a rectifier unit with a post-circuit management before being di-
rected into a storage unit, thereby ensuring efficient energy uti-
lization. A complete SCPS (Figure 2a) can provide continuous
power supply to electronic devices. Typically, the energy storage
devices for the TENG-based SCPS are primarily batteries and
SCs. SCs have higher power density and better cycle stability
compared to batteries. Therefore, this section primarily discusses
the SCPS constructed using TENG and SC.
In light of the swift advancements in wearable electronics, tra-

ditional rigid self-charging devices have become inadequate for
integration with flexible clothing. Consequently, a novel fiber-
like self-charging system has been introduced. Yang et al.[21] pro-
pose a 1D coaxial fiber-like self-charging system that incorpo-
rates an external TENG and internal SC (Figure 2b). This config-
uration not only harnesses energy through the external TENG,
but also stores it within the inner fibrous SC, thereby achiev-
ing both mechanical energy harvesting and storage. Within this
design, carbon fiber is employed as the electrode material for
the TENG and SC. Concurrently, silicone rubber functions as
both a separator and a triboelectric layer. Both the SC and TENG
demonstrate remarkable stability, ensuring prolonged durability
for everyday use. Han et al.[22] have developed a coaxial energy
yarn tailored for multifunctional applications of energy harvest-
ing/storage/utilization. The fiber-like TENGboasts a peak output
power of 2.5 μW, while the fiber-like SC exhibits a specific capaci-
tance of 13.42 mF cm−1. Furthermore, the fiber-like self-powered
tactile sensor demonstrates a sensitivity of 1.003 V kPa−1. Beyond
its utility in powering wristwatches and thermometers, this en-
ergy fiber is also capable of performing functions such as pres-
sure sensing and smart identification.
Individual fibers generally possess limited mechanical

strength and load-bearing capacity. To enhance the performance,
researchers have woven fibers into some textiles or directly
incorporated fibers into fabrics to establish a textile self-charging
system. Hu et al.[23] have developed a self-charging functional
textile comprising a yarn-based TENG and a yarn-based asym-
metric SC. The TENG yarn is integrated into the textiles’ daily
wear, thereby harnessing the biomechanical energy produced
from human motions. With a short-circuit current of 2 μA for
the fabric TENG and a areal energy density of ≈78.1 μWh cm−2

for the yarn-based SC, the combined textile SCPS can power
a watch without an external power source. Dong et al.[24] have
introduced a power textile knitted in an all-yarn structure that
exhibits self-charging ability, high stretchability, and excellent
washability even after multiple cycles (Figure 2c). This textile
maintains high strength, elasticity, toughness, and good stretch-
ability, accommodating the dynamic movements of the human
body. By integrating the yarn-based TENG and yarn-based
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Figure 1. Machine learning enhanced self-charging power source based on TENG and SC.

SC through weft knitting, the resulting textile demonstrates
superior elasticity, toughness, and stretchability. Pu et al.[25]

have reported another self-charging power textile using yarn SC
with reduced graphene oxide as the active material, achieving a
capacitance of up to 13 mF cm−1. The TENG rapidly supplies
power to the SC (charging to 2.1 V within 2009 s), enabling
it to power a watch without an external power source. Wang
et al.[26] have described a specific self-charging power textile
in a coplanar fashion by incorporating micro SC (MSC) with
TENG fabricated via one-batch resist-dyeing method. The MSC
exhibits a commendable maximum areal capacitance (50.6 mF
cm−2), while the fabric TENG boasts an outstanding peak power
density (94.5 mWm−2). The fabric-based SCPS holds promising

prospects for future development and application in wearable
electronics.
The trend in flexible electronic devices is toward being

lightweight and thin, leading to the rapid development of SCPSs
that meet the same requirement. Sun et al.[27] have proposed
a self-supplying functional paper-based device, comprising an
all-paper TENG, a power management system, a SC, and a
back-end application circuit (Figure 2d). Each module operates
independently but integrates to form the complete functional
paper-based device. The paper-based TENG can readily charge
a 2.2 μF commercial capacitor to 10 V in 19 s. The paper-SC also
attains a maximum areal specific capacitance of 1.6 mF cm−2 un-
der a discharging current density of 2 μA cm−1 in galvanostatic
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Figure 2. a) Schematic diagram of self-charging power system based on TENG and SC. Top of energy storage section: Reproduced with permission.[167]

Copyright 2021, Royal Society of Chemistry. The middle part of energy storage section: Reproduced with permission.[168] Copyright 2016, Wiley-VCH.
Bottom of energy storage section: Reproduced with permission.[169] Copyright 2021, Wiley-VCH. b) Fabric-based self-charging device structure and
circuit. Reproduced with permission.[21] Copyright 2018, American Chemical Society. c) Textile-based self-charging device structure, circuit, and actual
photo. Reproduced with permission.[24] Copyright 2017, American Chemical Society. d) Planar paper-based structure, schematic of multifunctional
module. Reproduced with permission.[27] Copyright 2022, Royal Society of Chemistry. e) Integrated self-charging energy pack structure, circuit, physical
demonstration. Reproduced with permission.[29] Copyright 2021, Elsevier.

charge–discharge (GCD) tests. The paper-based PMC module
has a power management efficiency of up to 53.6%, with power
supply applications including light-emitting diodes (LEDs), tem-
perature/humidity sensors, and an infrared wireless transmitter.
The demonstrated self-powered functional paper module intro-
duces a pioneering paradigm for sustainable functionality and
multifunctional circuits. Song et al. have demonstrated an en-
vironmentally friendly self-charging system based on paper.[28]

A layer of gold is sputtered on the surface of commercial paper

through shadowmask, serving as an electrode for both the TENG
and MSC. This paper-based self-charging model has the poten-
tial to power global positioning system devices. Furthermore, the
active electrode material of MSC can be directly written by a pen-
cil and amenable to surface functionalization to significantly in-
crease energy storage capacity while reducing production costs.
In addition to fibers, fabrics, and planar structures, more

diverse structural designs have been explored on integrated
self-charging energy packages. Deka et al.[29] have reported a
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self-charging energy packet (Figure 2e). The power of the TENG
based on woven carbon fiber (WCF) has reached up to 8.9 mW,
while the energy density of the WCF-based SC can reach up
to 1.93 Wh kg−1. The specific surface of the WCF could be
significantly enhanced by coating the N-doped Zn-Cu selenide
nanoporous material onto the WCF surface, thereby improving
the energy storage capacity of the SC. Concurrently, this structure
exhibits excellent mechanical strength of 453.97 MPa and modu-
lus of 35.29 GPa, making it highly suitable for future automotive
and aerospace applications. Qin et al.[30] have demonstrated an
intelligent self-charging energy package capable of determining
the charging state with an electrochromic SC through its color
change. The integrated SC array can be self-charged to 3 V, sub-
sequently illuminating the LEDs. This straightforward and cost-
effectivemethod of smart self-charging power packs holds poten-
tial for future daily electronics applications. Li et al.[31] propose a
newmethod for fabricating integrated energy conversion and en-
ergy storage devices by combining TENG and capacitors based
on poly(vinylidene fluoride)-co-hexafluoropropylene. The device
significantly enhances TENG performance, achieves stable DC
voltage, and is capable of powering a digital calculator and laser
diode. It also performs excellently even in a miniaturized size of
1 × 1 cm, with a maximum output voltage of 271 V. This work
provides a novel strategy to develop high-performance SCPS.

3. ML for Energy Harvesting and Storage

ML represents a significant branch of artificial intelligence.
Recently, it has made substantial advancements in aiding the
development of new materials and the design of specialized
devices.[32–35] In the realm of material and device optimization,
the utilization of ML can significantly expedite the process of ma-
terial discovery and structural optimization. Conventional mate-
rial research requires extensive experimental resources and pro-
longed development cycles, whereas ML technology enables ac-
celerated process optimization. Through ML technologies, re-
searchers can refine models by learning from existing datasets.
Subsequently, these optimizedmodels can be used for prediction
and simulation to guide experimental design and material devel-
opment. For SCPS,ML offers significant potential to optimize in-
dividual components, particularly energy harvesting/storage de-
vices, thereby enhancing the efficiency and performance of the
whole system. This section will discuss the basic types of ML
and its important applications in energy harvesting and storage
devices.
ML can be categorized into three primary learning methods:

supervised, unsupervised, and reinforcement learning. There-
into, supervised learning involves training algorithms to opti-
mize predictive models using labeled datasets, enabling accurate
predictions on new data. This method is typically employed for
classification and regression problems, with the optimization of
novel energymaterials or devices largely reliant on this approach.
In contrast, unsupervised learning analyzes unlabeled datasets
through techniques such as clustering, dimensionality reduction,
and association rule mining. Reinforcement learning constitutes
a decision-centric paradigm where algorithms iteratively interact
with environments through trial-and-error mechanisms, dynam-
ically adjusting strategies to maximize cumulative reward.

The selection of algorithms is fundamental to ML technol-
ogy, serving as a tool for extracting information from data,
discerning patterns, and making informed decisions. As illus-
trated in Figure 3, this paper primarily explores the applica-
tion of ML in energy-storage materials and energy-harvesting de-
vices. Related research involves a variety of ML models, such
as linear regression (LR), decision trees (DT), random forests
(RF), and support vector machines (SVM), as well as artifi-
cial neural networks (ANNs), including deep neural networks
(DNNs), convolutional neural networks (CNNs), recurrent neu-
ral networks, graph neural networks (GNNs), among others.
These ML algorithms have found extensive applications in en-
ergy harvesting, specifically in materials and devices based on
photovoltaic,[36–43] thermoelectric,[44–51] piezoelectric,[52–55] and
triboelectric technologies.[56–60] Additionally, they have been ex-
tensively utilized in energy storage, particularly in batteries and
SCs.
Traditional ML algorithms demonstrate optimal performance

with structured datasets and limited-scale applications, typically
requiring manual feature engineering. Hu et al.[38] explored the
performance and key influencing factors of perovskite solar cells
using multiple regression algorithms. They trained the optimal
model using SVM algorithm and subsequently designed a long-
term ambient stable perovskite solar cell with an energy con-
version efficiency of 23.4%. Karade et al.[40] have employed vari-
ous algorithms to predict the optimal manufacturing conditions
and device parameters of Cu2ZnSn(S,Se)4 thin film solar cells.
Based on optimized DT and classification and regression tree
rules, in conjunction with a well-trained RF model, they have
achieved the highest average power conversion efficiency (PCE)
of over 10.1% (champion device ≈11.0%). Jing et al.[53] have uti-
lized six ML algorithms, namely least absolute shrinkage and se-
lection operator (LASSO), AdaBoost regressor, support vector re-
gressor (SVR), random forest regressor, extreme gradient boost-
ing regressor (XGBoost), and gradient boosting regressor (GBR),
to predict the performance of aluminum nitride-based piezoelec-
tric materials with varying concentrations and compositions. The
GBR model outperformed the others in terms of performance,
with a mean absolute error (MAE) of 0.21 and R-squared (R2)
of 0.79. Saeidi Javash et al.[48] have pioneered the integration of
ultrafast flash sintering with Gaussian process regression ML
models and Bayesian optimization to predict the optimal flash
sintering variables for n-type silver selenide thermoelectric films.
This approach ultimately aided in designing flexible thermoelec-
tric film with a ZT value of 1.1.
Deep learning offers a robust solution for addressing un-

structured data and large-scale problems. This methodology em-
ploys multilayer neural networks that autonomously learn hi-
erarchical feature representations, significantly reducing depen-
dence on manual feature engineering. Wang et al.[42] lever-
aged ML to develop an exceptional model for predicting the
PCE of organic solar cells, achieving a correlation coefficient
(r) of 0.79. They have implemented efficiency models based on
molecular properties and property models that establish the re-
lationships between properties and molecular structures using
the light gradient boosting machine algorithm and GNN algo-
rithm, respectively. Li et al.[50] implemented a neural network-
based transfer learning (TL) strategy for electron bandgap pre-
diction, demonstrating high accuracy in forecasting ZT values of
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Figure 3. The application of ML in energy harvesting and storage. The inner circle displays examples of several commonly used ML algorithms. The
hexagonal outer ring showcases technologies related to various energy harvesting devices and energy storage devices. Piezoelectric device: Reproduced
with permission.[53] Copyright 2023, Royal Society of Chemistry. Solar cells: Reproduced with permission.[43] Copyright 2022, The Authors. Thermo-
electric device: Reproduced with permission.[44] Copyright 2021, Elsevier. Thermoelectric material: Reproduced with permission.[45] Copyright 2022,
American Chemical Society. Triboelectric nanogenerator: Reproduced with permission.[56] Copyright 2020, Elsevier. Lithium battery: Reproduced with
permission.[138] Copyright 2021, Wiley-VCH. Electrode material: Reproduced with permission.[170] Copyright 2023, The Authors. Supercapacitors: Re-
produced with permission.[171] Copyright 2023, The Authors.
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thermoelectric materials at any given temperature. When com-
pared to direct ML, the TL model increased the Pearson corre-
lation coefficient of p-type systems from 23% to 95%, and the
coefficient of n-type systems from 46% to 94%. Recently, Mer-
chant et al. have proposed a large-scale active-learning MLmodel
known as graph networks for materials exploration, which has
achieved unprecedented efficiency in material discovery. This
advancement holds significant implications for material discov-
ery in areas such as batteries and photovoltaic technology. Zhu
et al.[44] proposed a hybrid framework integrating genetic al-
gorithm (GA) with ANN for power performance optimization.
Their findings reveal that this combined methodology achieves
negligible deviation from COMSOL multiphysics simulation re-
sults while accelerating parametric analysis by over three or-
ders of magnitude compared to conventional finite-element ap-
proaches. This breakthrough demonstrates the potential of ma-
chine learning-enhanced computational strategies in overcom-
ing the time-accuracy trade-off inherent inmechanoelectrical sys-
tem design.

4. ML for TENG Performance Optimization

TENG is an important energy harvesting unit in SCPS, and using
ML to improve TENG performance is an important step in sys-
tem optimization. This section will provide a succinct overview
on the fundamental mechanism and current advancements in
TENG technology, followed by a review of the progress made in
computer-aided optimization of TENGdesign. Lastly, we propose
a generalized ML architecture along with suggested parameters
to predict the output performance of TENG.

4.1. Triboelectric Nanogenerators

Since its introduction in 2012,[6] TENG has transitioned from a
fundamental physical concept to an efficient technology for en-
ergy harvesting. The mechanical-electrical energy conversion in
TENG primarily involves two processes: contact-electrification
(CE) and electrostatic induction. While CE was first observed
over 2600 years ago, there still remains no universally accepted
unified scientific understanding of its mechanism. Research
by Wang et al.[61,62] suggests that electron transfer is the pri-
mary mechanism governing interface charge processes in solids,
liquids, or gases. Building on the dominant working mecha-
nism of electron-emission assisted charge-transfer process, Xu
et al.[63] have proposed an electron-cloud–potential-well model
(Figure 4a), which can account for all types of CE based on con-
ventional materials. In this model, atoms are depicted as poten-
tial wells, with electrons outside the shell loosely interacting to
form an electron cloud for each atom or molecule. As illustrated
in Figure 4a(i), d represents the distance between electron clouds,
EA and EB denote the occupied energy levels of electrons in the
atoms of two different materials A and B, and E1 and E2 repre-
sent the potential energy required for electrons to escape from
the surfaces of material A and material B, respectively. Prior to
the contact between the two materials, electrons are confined by
the local trapping effect of their potential wells and cannot be
transferred. Upon contact (Figure 4a(ii)), electron clouds from
both materials overlap, forming an asymmetric double potential

well that enables electrons to transition from atoms of material
A to those of material B. When separated (Figure 4a(iii)), the en-
ergy barrier E2 in material B retains most of the transferred elec-
trons if the temperature is not excessively high. This process cor-
responds to the CE phenomenon occurring between electroposi-
tive material A and electronegative material B. Figure 4a(iv) illus-
trates that an increase in temperature T corresponds to a propor-
tional rise in electron energy, as indicated by the growth of k·T.
This trend facilitates the transition of electrons from the potential
well. The proposed electron-cloud–potential-well theory provides
a comprehensive understanding on the CE behavior across vari-
ous material types.
The design of a TENG necessitates both structural innovation

and the optimization of multiple materials,[64–71] which can help
to optimize its energy collection efficiency and to accommodate
varying application requirements. As illustrated in Figure 4b,
the prevalent working modes of TENG encompass contact-
separation, lateral sliding, single-electrode, and freestanding
workingmodes, respectively. Taking the contact-separationmode
TENG as an example, when two distinct materials come into con-
tact, the disparity in electron affinity between them results in
materials with higher electronegativity acquiring electrons from
those with lower electronegativity. This process generates oppos-
ing charges on the contact surface of the twomaterials. Following
this, when these materials are separated, the potential difference
between each other creates an electric field. This electric field
drives electrons to flow from onematerial to another via an exter-
nal circuit, thereby generating an output current. In subsequent
cycles, the repeated contact-separation process continuously gen-
erates alternating current, facilitating the mechanical-electrical
energy conversion.
Compared to conventional energy-harvesting technologies,

TENG exhibits several advantageous characteristics,[11] encom-
passing cost-efficient production, simple fabrication processes,
robust low-frequency energy harvesting capabilities, strong en-
vironmental adaptability, broad material compatibility, and self-
powered functionality. These attributes have established TENG
as a transformative technology for energy harvesting and self-
powered sensing applications. Not only can TENG harness en-
ergy from human movement,[72] but it can also collect envi-
ronmental energy from vibrations,[73] wind,[74] raindrops,[75] and
waves[76] present in the environment. Remarkably, TENG can
gather this environmental energy with no requirement for ex-
ternal power source, which can then be utilized to power sen-
sors and enable energy-autonomous operation. This type of sen-
sor holds significant potential for application across various
fields such as smart homes,[77] health/motion monitoring,[78,79]

biomedicine,[80] smart transportation,[81] robotic systems,[82] en-
vironmental monitoring,[83] etc.

4.2. Computer-Aided TENG Optimization

Current research integrating TENGwithML techniques predom-
inantly focuses on sensing applications. These studies utilize ML
to analyze the signals gathered fromTENG sensors, aiming to en-
hance signal processing efficiency and accuracy. This approach
empowers TENG sensors not only to effectively convert mechan-
ical energy to electrical energy but also to execute more intricate

Adv. Funct. Mater. 2025, 2505719 © 2025 Wiley-VCH GmbH2505719 (7 of 25)
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Figure 4. The common principle and working modes of TENG. a) Electron-cloud–Potential-well Model. b) The four common working modes of TENG.

tasks such as action recognition, health monitoring, and envi-
ronmental surveillance through intelligent data analysis. While
ML has been extensively applied to TENG sensors, its system-
atic research for device design andmaterial optimization remains
nascent.
Table 1 Summarize recent studies on the influence of struc-

tural parameters (e.g., grating number, grating space, grating
width) on the output performance of TENG devices. Khorsand
et al.[56] have tried to integrate the mathematical model of rotat-
ing TENG with the grey wolf optimization (GWO) algorithm, an-
alyzed the relying of generated energy on kinematic/geometric
parameters, and derived the optimal distribution of transferred
charges, output voltage/current, and harvested mechanical en-
ergy. Wang et al.[57] have employed SVR algorithm to process fi-

nite element simulation data of cyclic graphing structured TENG
to achieve higher accuracy fitting results. By integrating SVRwith
numerical analysis, specially the Runge–Kutta method, the struc-
tural parameter n of TENG was effectively optimized. This study
also analyzed the impact of key parameters, such as the gap h be-
tween the rotor and the stator and the partial capacity on TENG
performance across varying values of n. Jiang et al.[58] employed
a stochastic gradient descent (SGD) to optimize a DNN model
based on experimental data, predicting the output performance
of three distinct TENG types: graded structure, disc structure,
and rolling structure. This approach offers a novel strategy for
optimizing TENG performance. Zhou et al.[59] performed finite
element analysis and equivalent circuit simulation using COM-
SOL Multiphysics and MATLAB Simulink, respectively. They

Adv. Funct. Mater. 2025, 2505719 © 2025 Wiley-VCH GmbH2505719 (8 of 25)
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Table 1. Research on optimizing TENG performance with AI/ML algorithms.

Date TENG structure ML algorithms Key parameters

2020[56] Rotary GWO Grating space, angular velocity, tribo-spacing, etc.

2021[57] Cylindrical grating-structured SVR Grating numbers, stator gap, parasitic capacitance, etc.

2022[58] Grating, disc, and rolling SGD, DNN Grating width, sliding velocity, gap distance, etc.

2023[59] Rotary NSGA-II Outer radius, electrode pairs, and electrode gap

subsequently applied a non-dominated sorting genetic algorithm
II (NSGA-II) to the resulting data to derive an optimized free-
standing rotational TENG performance model.
In addition to studying the impact of structural parameters on

TENG device performance, ML technology also plays an impor-
tant role in key material discovery. Zhang et al.[84] applied the
backpropagation neural network of differential evolution algo-
rithm to determine the electrical properties of flexible Ag/poly
(amic acid) (PAA) composite structures. The study used PAA
concentration, ion exchange time of AgNO3, concentration and
reduction time of NaBH4 as characteristic parameters, and the
product of thin layer resistance and treatment time of Ag/PAA
thin films as the target parameter to establish a high-precision
ML model with a relative prediction error of less than 1.96%.
Hu et al.[85] used SVR models to predict the dielectric constant
and bandgap of binary and ternary oxides. The determination co-
efficient R2 of the final model in predicting the dielectric con-
stant is 0.886, and the root mean square error (RMSE) is 0.083;
In bandgap prediction, R2 is 0.832 and RMSE is 0.533. The
model significantly improves computational efficiency and pre-
diction accuracy compared to traditional methods. In addition,
the mechanical properties of the triboelectric layer material also
have an impact on the durability and stability of TENG devices.
Wang et al.[86] studied the tribological properties of polytetraflu-
oroethylene (PTFE) composite materials by combining experi-
mental analysis withML. It was found that the friction coefficient
andwear rate of PTFE compositematerials decrease with increas-
ing speed, while an increase in temperature leads to an increase
in wear rate and a decrease in interfacial bonding strength. The
GBRmodel performs the best in predicting wear rate (R2 = 0.91,
RMSE = 4.34), and Pearson correlation coefficient indicates that
speed and temperature are the most significant factors affecting
friction coefficient and wear rate.

4.3. Selection of Features and Targets

The selection of targets in research typically hinges on the specific
objectives of the study. Open-circuit voltage (VOC), short-circuit
current (ISC), and transferred charge (QSC) are commonly cho-
sen as the algorithmic targets due to their straightforward mea-
surement, which facilitates the characterization of TENG perfor-
mance. Depending on the research objective, additional parame-
ters such as energy conversion efficiency, output power, and cycle
stability can also be selected as targets.
Regardless of the ML algorithm employed, the selection of ap-

propriate features takes into account multiple factors associated
with TENGperformance, including but not limited to itsmaterial
properties, structural design parameters, operating conditions,

and environmental impact factors. Drawing from previous theo-
retical studies on TENG, the selected features are categorized into
three types in the proposed generalmodel: structural parameters,
material parameters, and environmental parameters. Using the
neural networkmodel as an illustrative example, the relationship
between these features and targets is depicted in Figure 5a.

4.3.1. Structure Parameters

The structural parameters influencing TENG performance typ-
ically encompass the maximum displacement area Xmax, device
area A, dielectric layer thickness d and load resistance R. For
ease of classification, this paper considers the maximum dis-
placement distance Xmax as a structural parameter, despite it not
being an integral part of the TENG structure.
Zi et al.[87] introduced a universal benchmarking method

for evaluating the performance of various TENGs in 2015.
This method, termed performance figure-of-merits (FOMP)
of TENGs, comprises figure-of-merits for structural attributes
(FOMS) and figure-of-merits for materials (FOMM), described by
the formula as follows:

FOMP = FOMS ⋅ FOMM =
2𝜀0
𝜎2

Em
AXmax

⋅ 𝜎2 = 2𝜀0
Em

AXmax
(1)

In the given formula, ɛ0 represents the vacuum dielectric con-
stant, 𝜎 denotes the triboelectric surface charge density, Em sig-
nifies the maximum energy achieved in a single working cycle, A
denotes the device’s area, and Xmax indicates the maximum dis-
placement area. As inferred from the referenced study, the ratio
of Em/AXmax is indicative of TENG properties, with A included
in the denominator to mitigate the TENG volume influence on
the output performance. Consequently, it can be deduced that
the structural parameters influencing TENG performance en-
compass both the maximum displacement area Xmax and device
area A.
Shao et al.[88] have conducted a study in 2018 on the structural

optimization of TENG taking into account the load resistances.
For each of the four fundamental modes of TENG, they not only
evaluated performance under varying load resistances R but also
investigated the influence of Xmax on the output performances.
Liu et al.[89] developed a qualitative benchmark for evaluating the
contact efficiency between electrodes and dielectrics in TENG. By
implementing various parameter modifications, such as dimin-
ishing the dielectric thickness, augmenting external capacitors,
modulating the atmospheric conditions, and optimizing surface
contact levels, they achieved a high charge density. This study
suggests that modifying the dielectric layer’s thickness, dented
as d, can markedly influence the output performance of TENG.

Adv. Funct. Mater. 2025, 2505719 © 2025 Wiley-VCH GmbH2505719 (9 of 25)
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Figure 5. The general parameters and general process of TENGML. a) A feature and target framework based on neural networks. b) The general process
of ML.

4.3.2. Material Parameters

Research on the FOMM of TENG indicates that the triboelectric
charge density 𝜎 is a decisive factor.[87] Optimizing this value of
𝜎 can significantly enhance the performance of TENG, thus it is
considered as a crucial material parameter. This charge density is
influenced by the triboelectric properties of the frictionmaterials.

However, when quantifying the triboelectric series, the contact
between solids is affected by the status of contact intimacy caused
by surface roughness at the nano/micrometer level, which results
in the measured surface charge density unable to reach its opti-
mal value. To address this issue, typical liquid metals (e.g., liquid
gallium, Galinstan, and mercury), can be utilized as alternative
triboelectric materials to improve the contact intimacy.[87] Using

Adv. Funct. Mater. 2025, 2505719 © 2025 Wiley-VCH GmbH2505719 (10 of 25)
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this method, Zou et al.[90] employed liquidmetal mercury as a tri-
boelectricmaterial to establish standards formeasuring the tribo-
electric charge density (TECD) of various materials. They subse-
quently measured the TECD of an array of polymers. The TECD
was normalized to reflect the inherent physical properties of the
material, referred to as the triboelectric series. Furthermore, Zou
et al.[91] conducted measurements on the triboelectric series of
over 30 inorganic non-metallic materials. The normalized value
of triboelectric series serves as a crucial material parameter with
significant reference implications for TENG performance. If the
ML-targeted materials fall within the aforementioned triboelec-
tric series, the quantified values can be utilized as input parame-
ters.
The performance of TENG is significantly influenced by the

surface charge density, which is affected by triboelectric charge
density and the status of air/dielectric breakdown. In the par-
allel plate TENG model, it is critical to guarantee that the gap
voltage Vgap under short-circuit conditions is less than the gas
breakdown voltage Vb to prevent air breakdown. Research

[89,92]

has demonstrated that the value of Vgap is contingent upon the
dielectric constant ɛr and the thickness d of the dielectric mate-
rial. Li et al.[93] further confirmed that an optimal dielectric con-
stant and increased thickness of dielectric materials can enhance
charge density, through both theoretical derivation and empirical
verification. Bulathsinghala et al.[94] conducted a comprehensive
theoretical and experimental analysis on the influence of mate-
rial dielectric constant on TENG performance, revealing the load-
dependent nature of the TENG response to increasing dielectric
constant of its layers. Under low load or short circuit conditions,
a higher dielectric constant slightly improves output, while under
higher loads, a lower dielectric constant notably enhances the per-
formance. The overall maximum power output and optimal load
are also higher when the dielectric constant is reduced.
Furthermore, optimization of the key materials in TENG can

significantly enhance its output performance. Common strate-
gies include surface physical modification, which increases both
surface roughness and contact area.[95–98] Chemical functional
group modification is another approach that enhances sur-
face triboelectric efficiency and broadens the range of material
selection.[99–103] High dielectric material doping is also employed
to augment charge storage capacity,[104–106] while charge injection
is utilized to increase initial surface charge density.[107–109] It is
imperative to consider the critical materials with optimization
strategies in feature selection to optimize ML performance.

4.3.3. Environmental Parameters

In addition to incorporating device structure andmaterial proper-
ties into feature selection within ML, it is imperative to also con-
sider a range of complex environmental factors. These include
variables such as temperature, humidity, and atmospheric pres-
sure.
The dielectric properties of triboelectric materials typically

exhibit temperature-dependent alterations. For instance, Wen
et al.[110] conducted an initial study on the performance of a
TENG device within the temperature range of 77–500 K. The
findings indicated that its output performance initially escalated
before diminishing with rising temperature, achieving optimal

performance ≈260 K. Lu et al.[111] further examined the perfor-
mance fluctuations of a single-electrode TENG in the tempera-
ture range of −20 to 150 °C, revealing a consistent decrease in
performance as temperature increases. The observed decline can
be attributed to alterations in the dielectric properties of the ma-
terial, coupled with fluctuations in effective defects under varying
temperatures.
Alterations in environmental humidity can also influence the

surface properties of triboelectricmaterials. For instance, a rise in
humidity may result in an increased number of water molecules
adsorbing onto the material’s surface, subsequently impacting
its triboelectric performance. Nguyen et al.[112] observed that as
the relative humidity (RH) dropped from 90% to 10%, the charge
generated by TENG (utilizing aluminum and polydimethylsilox-
ane as triboelectric materials) surged by over 20%.Wang et al.[113]

delved into the performance of common triboelectric materials
under varying RH conditions. Contrary to the conventional belief
that lower RH correlates with superior triboelectric performance,
their research indicated that different triboelectric materials pos-
sess distinct optimal RH values. The majority of these optimal
RH values fall between 28% and 35% (with few presenting the
optimal RH at 53%).
Air pressure is a critical environmental parameter due to its

significant influence on the performance of TENG. Nguyen et al.
have posited that as RH values approach zero, a decrease in air
pressure decreases from ambient levels to 50 Torr, which will lead
to a reduction in charge generation.[48] Furthermore, research in-
dicates that the impact of air breakdown can be mitigated in high
vacuum environments,[92,114] thereby significantly enhancing the
performance of TENG.

4.3.4. Specific Parameters under Different Working Modes

The aforementioned general parameters for ML (encompassing
structural, material, and environmental parameters) are univer-
sally applicable across all TENG operational modes. To enhance
the specificity of the ML model, it is imperative to further extract
the unique features of TENG across different working modes.
Given the variations in the structure and operational methods

of TENG across different working modes, there is a great poten-
tial for selecting input parameters during the ML process. For
instance, TENG in contact-separation and lateral sliding modes,
the effective dielectric thickness d0 emerges as a crucial parame-
ter, as defined by the formula:[115,116]

d0 =
d1
𝜀1

+
d2
𝜀2

(2)

In this context, d1 and d2 represent the thicknesses of the two
dielectricmaterials, while ɛ1 and ɛ2 denote their respective dielec-
tric constants.
In the context of freestanding TENG, two critical parameters,

the freestanding height h and the electrode gap g, exhibit a sig-
nificant coupling effect on its output performance.[117] These pa-
rameters can be regarded as pivotal features in ML. Similarly, for
single-electrode TENG, a robust correlation on TENG output ex-
ists depending on the distance g from the single electrode to the
reference electrode.[118] Furthermore, the properties of the ref-
erence electrode, inclusive of structural parameters such as its
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Table 2.ML parameters of TENG optimization for reference.

Parameter types Parameters Applicable TENG Refs.

Structure Maximum displacement distance All [87,120]

Contact area of device

Thickness of the dielectric layer [89]

Load resistance [120]

Electrode gap distance SE, FT [117,118]

Properties of reference electrodes SE [119]

Hight of free layer FT [117]

Material Material dielectric constant All [93]

Triboelectric sequence [90,91]

Surface treatment [95–109]

Effective thickness of dielectric layers CS, LS [115,116]

Ambient temperature All [110,111]

Environment Ambient humidity [112]

Ambient pressure

Other factors Average velocity of contact-separation CS [115]

Period of Motion CS, LS [116,120]

Sliding acceleration LS [116,121]

Sliding velocity [122]

Dynamic friction coefficient

Apply force

position, area, thickness, and shape, significantly influence the
overall performance of the equipment.[119]

In addition to material parameters, structural parameters,
and environmental factors, the operating conditions under var-
ious working modes can significantly influence the output of
TENG. The velocity,[115,122] acceleration,[116,121] and period of
motion[117,120] during TENG’s operation can also be considered
as input parameters. A comprehensive list of different types of
ML parameters for TENG is provided in Table 2 for reference.

4.4. The General Process of ML

As illustrated in Figure 5b, the overarching process of ML tech-
nology can be delineated into five distinct steps: 1) The collection
and preprocessing of data. 2) The execution of feature engineer-
ing to discern significant input parameters. 3) The selection of
an appropriate ML algorithm. 4) The training and evaluation of
the ML model. 5) The application of the optimally trained model
to prediction, followed by experimental verification.

4.4.1. Data Collecting and Pre-Processing

Dataset quality determines ML outcomes due to its direct im-
pact on prediction accuracy. Typically, ML data in the domain
of energy harvesting and storage devices primarily originates
from published experimental records or computational simula-
tions. For material property analysis, established authoritative
databases like the materials project,[123] industrial crystal struc-
ture database,[124] and crystal open database[125] provide validated
references. When experimental datasets with sufficient quality

and statistical representativeness exist in the target domain, their
direct utilization offers cost-efficiency advantages. Conversely,
under scenarios involving scarce experimental data, prohibitive
costs, or extreme operational conditions, simulation-based ap-
proaches emerge as viable alternatives. TENG data acquisition
strategies are determined by both the requirements of research
objectives and the quality/quantity of available data in relevant
literatures. If a substantial volume of published data exists per-
taining to the research objective type, or if the experimental con-
ditions are readily attainable, data can be produced from the ac-
tual experimentation. Since TENGperformance exhibits sensitiv-
ity to minor parameter fluctuations, it is imperative to ensure the
reproducibility of these experimental data. When existing data
is insufficient and experimental data collection is challenging,
mathematical models and simulation tools (e.g., COMSOL Mul-
tiphysics) can be utilized to generate simulated datasets.
ML applied to TENG performance prediction requires system-

atic integration of multi-domain parameters. The characteristic
parameters include structural parameters such as maximum dis-
placement area, device area, dielectric layer thickness, and load
resistance; material parameters like triboelectric series, dielectric
constant, and the optimization of thematerial; environmental pa-
rameters encompassing temperature, humidity, and air pressure;
output performance metrics include VOC, ISC, QSC, and output
power.
Upon completion of data collection, it is essential to perform

data preprocessing. If the data originates from published lit-
erature, discrepancies in the types of contained data may lead
to missing values in the resulting dataset. Depending on the
types of parameter types, there are relevant strategies for dealing
with the missing data. For numerical TENG parameters (e.g., di-
electric thickness), statistical imputation (e.g., mean or median
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substitution) proves effective. When the missing data exceeds
a certain threshold (such as 30%), this data set should be
deleted. Non-numerical discrete features may also be encoun-
tered, which require transformation through encoding schemes
prior to model ingestion. An example could be the optimiza-
tion methods for triboelectric materials in TENG, which encom-
pass surface physical modification, surface chemical modifica-
tion, and high-𝜅material doping. Prior to incorporating these pa-
rameters intoML algorithms, it is imperative to convert these fea-
tures into numerical formats comprehensible to themodel. Com-
mon techniques for this conversion include label encoding or
one-hot encoding. Notably, one-hot encoding proves more apt for
classifying different material optimization methods, given their
lack of mutual relationships.
Feature scaling (including normalization/standardization) is

a crucial aspect of data preprocessing, as it markedly enhances
the performance of ML algorithms and expedites the training
process. This is particularly true for gradient descent-based al-
gorithms, such as LR and ANN, as well as distance-based algo-
rithms like K-nearest neighbors and K-means. Feature scaling
is essential in these scenarios to ensure that data points are on
comparable scales. This approach mitigates issues arising from
scale discrepancies, thereby facilitating a more robust and effi-
cient learning of feature relationships.

4.4.2. Feature Engineering

In ML, features generally refer to the various attributes or vari-
ables used to describe samples in data, also known as fingerprints
or descriptors in literature.[126] Features are also the basis for ML
models to learn patterns and make predictions from data. They
contain useful information related with samples, which can be
in the form of numerical values, categories, text, images, etc.
The objective of feature engineering is to extract optimal fea-
tures from raw data that enhance target analysis, while reduc-
ing dimensionality without sacrificing model performance. In
the context of high-dimensional data, dimensionality reduction
methods are typically employed to mitigate redundant informa-
tion and enhance themodel’s generalization. Commonly used di-
mensionality reduction techniques include principal component
analysis[127] and t-distribution neighborhood embedding.[128] For
TENG-optimized models, the number of features is relatively
small, allowing for the adoption of feature selection methods to
optimize the feature set. The prevalent method of feature selec-
tion involves the analysis of data correlation, which is bifurcated
into two categories: the correlation between features and the cor-
relation between features and targets. An ideal feature set ex-
hibits low inter-feature correlation (minimizingmulticollinearity
risks that compromise model stability and interpretability) and
high feature-target correlation (maximizing predictive accuracy).
Excessive feature redundancy also increases computational costs.

4.4.3. ML Algorithms Selection

The second section of this paper introduces several prevalent ML
algorithms utilized for material screening and device optimiza-
tion. There is no specific algorithm that is superior to all other

algorithms in solving different problems,[129] so it is necessary
to choose the appropriate algorithm based on the specific tar-
get. The choice of ML algorithms depends on data characteris-
tics (scale, dimensionality, noise, etc.), task objectives (classifica-
tion, regression, clustering, etc.), structural complexity (nonlin-
earity, sparsity, etc.), and deployment constraints (interpretability,
computational resources, etc.). For predicting the performance of
TENG devices, data is typically structured in tabular format with
numerical features. Given that the relationship between features
is often non-linear, linear regression models, which are relatively
simplistic, are unsuited for such predictions. In most instances,
tree-based ML models (DT and RF) prove more effective for pre-
dicting TENG performance under identical working modes due
to their suitability for tasks with low feature dimensions and rel-
atively small datasets. However, when dealing with complex fea-
ture relationships and large datasets, deep learning emerges as
a viable option. Despite the lack of interpretability compared to
DT and RF, deep learning boasts superior adaptability to com-
plex patterns and generalization to unseen data. Given the di-
verse parameter configurations and experimental conditions as-
sociated with different problems, the most effective strategy for
determining the optimal ML algorithm for a given problem in-
volves experimenting with multiple algorithms and conducting
a comprehensive evaluation.

4.4.4. Model Training and Evaluation

Model training is a process designed to enable the ML algo-
rithm to fully comprehend the patterns within the data, and sub-
sequently adjust the model’s parameters (such as weights and
biases) through repeated iterative training. The ultimate objec-
tive of this process is to minimize the loss function by adjust-
ing parameters (e.g., weights and biases), thereby enabling the
model to generalize well to unseen data. To achieve this goal,
systematic tuning is required. Hyperparameters, which include
both training settings (e.g., learning rate, number of epochs)
and architectural choices (e.g., hidden layer size, activation func-
tions), play a critical role.[130] Properly tuning these values con-
trols model complexity. For instance, higher learning rates ac-
celerate convergence but risk instability, while deeper networks
improve fitting capacity at the cost of overfitting. Since datasets
vary in characteristics and distributions, properly tuned hyper-
parameters enable the model to adapt to these variations, bal-
ancing between underfitting and overfitting. In traditional ANN
training, the SGD method[131] is commonly employed to opti-
mize the training model. However, adaptive algorithms like root
mean square propagation and adaptive moment estimation are
now widely adopted. These methods adjust learning rates per pa-
rameter, enabling faster convergence and robustness to hyperpa-
rameter choices. Beyond gradient-based methods, evolutionary
algorithms (e.g., GA, PSO, GWO) offer a global search strategy to
optimize both hyperparameters and network architectures (e.g.,
depth, width), albeit at higher computational costs.
During the training phase of the optimal model, evalua-

tion metrics provide quantitative feedback during hyperparam-
eter tuning, guiding the selection of configurations that max-
imize model performance. For regression models forecasting
TENG performance, prevalent evaluation metrics encompass
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mean square error, root mean square error (RMSE), MAE, R2.
Complementing these metrics, techniques such as K-fold cross-
validation and diagnostic visualizations are applied to holisti-
cally evaluate model performance. K-fold cross-validation miti-
gates overfitting by evaluating hyperparameters across diverse
data splits, ensuring their robustness to data variability. Visual-
izations like scatter plots (actual versus predicted values) reveal
systematic biases, while residual plots highlight regions where
the model underperforms.

4.4.5. Application and Experimental Verification

The final phase entails experimental validation of the model’s
predictive capability under diverse combinations of material,
structure, and environmental parameters. Once the performance
of themodel has been validated, it can be utilized to predict TENG
performance for new datasets. It is crucial to underscore that the
efficacy of TENG is significantly influenced by certain environ-
mental conditions, including temperature and humidity. Conse-
quently, it is imperative to maintain consistency between the pa-
rameters in the experimental design and those in the model’s
input.

5. ML for SC Performance Optimization

In SCPS, the performance of energy-storage devices can also be
optimized through ML. There have been many studies explor-
ing how to improve the performance of batteries and SCs as-
sisted with ML. This section will take SC as the typical energy-
storage device and give a comprehensive investigation, from the
basic working principle to the progress of carbon-based SC de-
sign based on ML technology and computer-aided solution to
self-discharge problem.

5.1. Supercapacitors

Compared with large-scale power grid energy-storage systems,
portable and wearable electronic devices rely even more on the
support of SCPS. The potential applications of SCPS in the future
will be vast, for which the effective enhancement of their perfor-
mance will be a critical issue.[9,132–135] In the previous sections,
we have systematically explored and anticipated strategies to im-
prove the performance of TENG through aML approach. Beyond
enhancing the energy-harvesting properties, it is essential to aug-
ment the storage capacity of SCs at the energy-storage side. Con-
currently, addressing the inevitable self-discharge phenomenon
inherent in SCs is crucial for achieving cost-effectiveness.[136–141]

SCs are devices designed to address the escalating energy de-
mand. They have gained great attention from researchers due to
their high power density and safe operation.[142–144] The longevity
of SCs is a crucial parameter for a SCPS, which aims to provide
sustainable energy. The energy storage mechanism of the SC is
illustrated in Figure 6a. During the charge-discharge process of
the electrical double layer (EDL) SC, the electrolyte ions move in
opposing directions without any chemical reaction. This allows
the EDL SC to maintain excellent electrochemical performance

over tens of thousands of cycles. However, an energy storage pro-
cess relying solely on a physical energy-storage mechanism re-
sults in a low specific capacitance value for the EDL SC. As illus-
trated in Figure 6b, a pseudocapacitor undergoes a Faradaic re-
dox reactions between the electrode material and the electrolyte
ions during charge-discharge processes. This unique energy stor-
age mechanism allows the pseudocapacitor to deliver a higher
specific capacitance. The process is characterized by a swift, re-
versible redox reaction at or near the active material’s surface.
This mechanism is related to a shift in the electrode material’s
valence state due to electron transfer. However, the sluggish rate
of the Faradaic reaction compared to the charge electrostatic ad-
sorption and detachment rate results in a low power density for
the pseudocapacitor and poor cycling performance. Currently,
the electrode material is the primary factor influencing the per-
formance of SCs.
The self-discharge phenomenon of SCs results in a swift volt-

age drop and energy loss within the energy-storage device. There-
fore, comprehending the mechanism of self-discharge is vital to
mitigate the adverse effects induced by this behavior.[145–148] To
date, three commonly accepted mechanisms for self-discharge
have been widely accepted: leakage current, Faradaic reaction
(Figure 6c), and charge redistribution (Figure 6d). The leakage
current primarily arises from redox reactions near the electrode-
electrolyte interface and internal short-circuiting of the device
during the assembly process. Conversely, the Faradaic reaction
predominantly occurs due to the redox reaction between the func-
tional groups of the carbon-based material and the electrolyte,
leading to a voltage drop in the SC. Charge redistribution, in
contrast, is attributed to the charge concentration in the pores
when the SC is in its filled state, which then migrates toward
the depth of these pores due to concentration differences. This
migration is hindered by strong resistance, resulting in more ob-
struction to ion movement within the pores than that within the
electrolyte. This is the reason why spontaneous voltage drop oc-
curs. These three reasons to the self-discharge behavior in SCs
are closely tied to electrode materials. Carbon-based electrode
materials have thus far been extensively utilized in SCs, under-
scoring the significance of suppressing their self-discharge. Con-
sequently, it is imperative tominimize and prevent self-discharge
generated by these carbon-based materials.

5.2. ML for Carbon-Based SCs

Liu et al.[149] have leveraged ML techniques, utilizing hundreds
of experimental data points from the literature, to propose a
novel approach for designing high-efficiency carbonmaterials for
SCs. The primary focus is to investigate the correlation between
pore structure and SC capacitance (Figure 7a). The predicted ca-
pacitance of these carbon-based materials is achieved through
six ML models: extreme gradient boosting (XGBoost), gradi-
ent boosting machine, RF, multiple linear regression, SVM and
ANN. Notably, XGBoost model demonstrates superior predic-
tive performance with an accuracy of 0.892, surpassing the other
models. Among various parameters influencing porous features,
specific surface area (SSA), pore size (PS), and micropore sur-
face area percentage are found to have the most significant im-
pact on capacitance performance. Thismethodology significantly
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Figure 6. Energy storage and self-discharge mechanisms of supercapacitors. a) Bilayer b) underpotential deposition, redox, and ionic embedding.
c) Faradaic reaction d) Charge redistribution.

reduces both the cost and time associated with experimental pro-
cedures, delivering a promising direction for future research on
how to design high-performance carbon-based electrode materi-
als. Kushwaha et al.[150] reported on the prediction of the capaci-
tance performance for carbon-based SCs using five ML models.
Several parameters, including voltage window, specific surface
area (m2 g−1), and the pore size (nm), are selected to evaluate
their contributions and effects on capacitance. The results indi-
cate that the ANNmodel provides the most accurate predictions,
exhibiting the least RMSE andMAE, as alongwith the highestR2-
score values. The performance of the XGBoost and RF regressor

models closely matches that of the ANN model. Wang et al.[151]

introduced a ML-guided activation strategy for carbon materials.
The capacitance performance of SC was optimized by adjusting
the pore size structure and oxygen content within the carbonma-
terial. This approach closely aligns with the specific capacitance
of porous carbon electrodes, as predicted by ML methods.
In addition to the pore size/structure of the carbon-based ma-

terials, heteroatom-containing functional groups significantly in-
fluence the capacitive performance of SCs. This can typically be
modified by doping with heteroatoms such as nitrogen, oxygen,
and sulfur into carbon electrodes. Furthermore, doping nitrogen
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Figure 7. ML guided SC carbon material design. a) Statistical comparison of six model estimates of Taylor diagrams, the share of porous structure
features on the specific capacitance predicted by the XGBoost model, and the Pearson’s correlation coefficient between the porous structure features
and the specific capacitance. Reproduced with permission.[149] Copyright 2021, Elsevier. b) Heteroatom doping types, and the effect of different types of
functional groups on the capacitance predicted by the ANN. Reproduced with permission.[152] Copyright 2020, American Chemical Society. c) Correlation
between physicochemical properties of the carbon electrodes of supercapacitors. Comparison between predicted and actual specific capacitance under
different test conditions. Reproduced with permission.[155] Copyright 2023, The Authors.

on the carbonmaterial acts as an electron donor, thereby enhanc-
ing specific capacitance and improving the wettability of the ma-
terial via the Faradaic reaction. Zhou et al.[152] have elucidated
how the surface functional groups on carbon materials impact
the performances of SCs. The ML model offers a comprehensive
guide for designing and developing heteroatomic carbon materi-
als, potentially leading to a substantial increase in the energy stor-
age capacity of carbon-based materials (Figure 7b). Zhu et al.[153]

have assembled a dataset from over 300 literature sources on
carbon-based SCs, extracting more than 680 valid points. They
have selected five key features to analyze and assess their impact
on capacitance, including the specific surface area, evaluated pore
size, N doping level, voltage window, and ID/IG ratio (the inten-
sity ratio of the D-band to the G-band in Raman spectroscopy).
The findings indicate that the predictions made by ANN out-
perform those of linear regression and LASSO regression. This

Adv. Funct. Mater. 2025, 2505719 © 2025 Wiley-VCH GmbH2505719 (16 of 25)

 16163028, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202505719 by C
as-B

eijing Institution O
f, W

iley O
nline L

ibrary on [23/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

research underscores the significant potential of ANN in mate-
rials science and application design. Su et al.[154] have employed
ML techniques to predict the capacitance of carbon-based SCs.
The gathered 121 sets of data are collected to incorporate with
seven variables: pore volume, pore size, specific surface area, N
and O doping percentage, potential window, and ID/IG ratio. The
influence of these variable parameters on the bilayer’s capaci-
tance was examined using four typical ML models. The perfor-
mance ranking of these models is as follows: RT > multilayer
perceptron > SVR > LR.
The final capacitance performance is also influenced by vari-

ous test conditions and electrolyte types. Mishra et al.[155] have
examined the impact of electrode material characteristics on the
capacitance by analyzing the experimental data from 147 liter-
ature sources (comprising 4899 feature data) and establishing
a database for training and evaluating their ML model. This
analysis incorporated previously documented features, including
pore volume, pore size, defect presence, specific surface area, O
and N content, current density, and potential window. Further-
more, they considered categorical variables like testing method,
electrolyte type, and electrode carbon structure. The XGBoost
model was employed to predict the influence of two-electrode
and three-electrode characterizing strategies on the specific ca-
pacitance of SCs. The findings demonstrated satisfactory per-
formance parameters for both testing methodologies. To eluci-
date the relationship between electrolyte and specific capacitance,
datasets were extracted from both the characterizingmethods us-
ing an electrolyte of 6 M KOH. Performance parameters derived
from the XGBoost method revealed that pore volume, SSA, and
N% significantly influenced the three-electrode testing method,
whereas SSA, PS, and potential windowwere identified as signifi-
cant contributors to the two-electrodemethod. This research pro-
vides a foundation for future analysis and optimization of carbon-
based SCs’ specific capacitance. It also offers insights into the
chemical characterization and structure of carbon-based materi-
als, as well as the impact of testing methods and electrolyte on
the capacitance (Figure 7c). Saad et al.[156] conducted an exten-
sive study of over 200 articles on carbon-based SCs, culminating
in the creation of a corresponding database. Concurrently, they
gathered 15 distinct parameters with the objective of developing
a predictive model that could account for all conditional inputs.
The specific capacitance is influenced by several physicochemi-
cal properties of the electrode material, including electrode con-
figuration, SSA, pore size/volume, the percentage of C, N, and
O atoms, and the ratio of ID/IG. Furthermore, the specific capac-
itance is also affected by the electrochemical characteristics de-
rived fromGCD tests and EIS analyses. These include cell config-
uration, electrolyte concentration, electrolyte ionic conductivity,
applied potential window, current density, charge-transfer resis-
tance, and equivalent series resistance. The ANN model demon-
strates a robust capability to generate high predictive accuracy
values of 60.42 and 0.88 for the lowest RMSE and the largest R2,
respectively.

5.3. The Self-Discharge of SCs

To date, the literature reports on the enhancement of carbon-
based SCs have seen a consistent annual increase, with SCs gain-

ing significant traction in the realm of energy storage. Never-
theless, it is imperative to acknowledge that pronounced self-
discharge remains a pivotal challenge in SC applications.[157]

Despite the paucity of information on how ML guides the
material design and predicts self-discharge properties in SCs, a
significant volume of literature on SC modeling has been pub-
lished in recent years.[135,158,159] A primary impetus for this surge
in modeling research is that precise models facilitate an under-
standing of the self-discharge behavior of SCs under diverse sce-
narios, obviating the need for physical experiments. This could
significantly reduce the time and cost for relevant research. This
section primarily concentrates on the development of various
self-discharge models for SCs, as well as the strategies reported
to alleviate the self-discharge phenomenon in carbon-based SCs.
Pourkheirollah et al.[160] introduced a straightforward numer-

ical index-based means to simulate SCs’ self-discharge behavior
(Figure 8a). By employing experimental data from SCs to model
this self-discharge process, they were able to accurately replicate
the fixed curves of both self-discharge and leakage, thereby pre-
dicting the long-term self-discharge behavior of SCs with high
precision. This methodology is not only efficient but also uni-
versally applicable to carbon-based SCs. Kunwar et al.[161] fur-
ther elucidated the energy-storage mechanism of SCs through a
simplistic self-discharge curve (Figure 8b). These self-discharge
curves were plotted assisted with the MATLAB/Simulink plat-
form, with experiments conducted to record the self-discharge
curves of various electrode materials and different types of elec-
trolytes. The experimental data align well with the simulation
data. This model employs a straightforward data extraction al-
gorithm, comprised of three distinct models: rapid branching
for short-term behavior, slow branching, and long-term behavior
simulation with leakage resistance. The efficacy of themodel was
ascertained by simulating its charge/discharge behavior and im-
plementing a comparison with experiment data. The proposed
model is particularly well-suited for understanding the self-
discharge behavior simulations. Kaus et al.[162] introduced a com-
plex electrical model to address the charge redistribution mecha-
nism of SC self-discharge. The model they developed effectively
predicted the impact of initial voltage, charge duration, and tem-
perature on open circuit voltage decay. The predictions align
closely with experimental results. Ghanbari et al.[163] presented
a dynamic simulation on the equivalent circuit of SC by utiliz-
ing the experimental data extracted from self-discharge behavior.
The optimal exponential function was determined through the
weighted least squares method and fitted to this data. This model
provides an effective balance between accuracy and simplicity.
Tevi et al.[146] constructed a mathematical model to simulate and
demonstrate the impact of blocking on the self-discharge perfor-
mance of SCs. Kowal et al.[164] elucidated the self-dischargemech-
anism of SCs using a straightforward equivalent circuit model
(Figure 9).
Self-discharge significantly impedes the practical application

of SCs. To address this issue, a range of innovative and viable
strategies have been proposed to mitigate self-discharge based
on the underlying mechanism. Li et al.[165] developed activated
carbon electrodes with varying mass loadings and examined the
impact of different loadings on the self-discharge behavior of
SCs. The experimental findings indicate that as the mass loading
increases, the attenuation of the open-circuit voltage decreases.
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Figure 8. Self-discharge phenomenon and computer modeling of supercapacitors. a) Experimental and simulation results of ECM, self-discharge be-
havior of SC. Reproduced with permission.[160] Copyright 2023, The Authors. b) Overall approach to develop supercapacitor test system based on
self-discharge data, MATLAB unit supercapacitor models. Reproduced with permission.[161] Copyright 2023, Elsevier.

Specially, when the activated carbon loading escalates from 0.6 to
10.6 mg cm−2, the voltage attenuation diminishes from 1.07 mV
to 0.05 mV mF−1 h−1. Nitrogen-rich groups appear to be more
effective in inhibiting self-discharge compared to oxygen-rich
ones. This is particularly true for reduced graphene oxide ma-
terial, which possesses both porous and high nitrogen content
and exhibits a low self-discharge rate. This phenomenon can
be explained by the interaction between the electrolyte ions and
the nitrogen-containing functional groups. This binding force
impedes the redistribution of ions, thereby reducing the self-

discharge process. Despite recent advancements in mitigating
the self-discharge of SCs, there remains a need for more straight-
forward and efficient strategies to further diminish this phe-
nomenon. Xia et al.[145] proposed a method to reduce SCs’ self-
discharge, leveraging the electrorheological (ER) effect. This ap-
proach involves incorporating ER molecules into the electrolyte,
such as 4-n-pentyl-4′-cyanobiphenyl (5CB, a nematic liquid crys-
tal characterized by high dielectric anisotropy and chemical sta-
bility). Upon application of an electric field, the 5CB molecules
align in a specific direction of approximately parallel long axes.

Adv. Funct. Mater. 2025, 2505719 © 2025 Wiley-VCH GmbH2505719 (18 of 25)

 16163028, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202505719 by C
as-B

eijing Institution O
f, W

iley O
nline L

ibrary on [23/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

Figure 9. Prospects of SCPS based on TENG and SC. a) ML-assisted device performance optimization. b) Management circuit design with ML. c) ML
integration for the entire system. d) ML-enabled SCPS for diverse applications.

This alteration in molecular alignment results in a swiftly in-
creased fluid viscosity, which can be controlled by applied exter-
nal electric field. This mechanism effectively mitigates the self-
discharge effect of SCs. Consequently, this low leakage current
SC can be synergistically integrated with TENG to enhance the
charging efficiency of SC. The separator constitutes a crucial
component of SCs, serving a pivotal role in preventing internal
short circuits and facilitating the development of safe and high-
performance SCs. Wang et al.[166] introduced an innovative mod-
ification to the separator by incorporating sulfonate ion exchange
resin. This modified configuration enables the effective capture
of impurities (specifically transitionmetal ions) in the electrolyte.
Consequently, this minimizes self-discharge, thereby improving
the overall performance and reliability of the SCs.
SCs experience spontaneous charge loss and voltage drop, re-

sulting in a prevalent self-discharge. This process significantly
hinders the practical application of SCs, although it is not en-
tirely feasible to eliminate it. The most effective approach is to
minimize the rate of self-discharge as much as possible. Current
strategies for suppressing self-discharge primarily involve mod-
ifying electrode materials, adjusting electrolyte, and regulating
the separator. As research into the phenomenon and theory of SC

self-discharge continues to expand, ML will undoubtedly play a
pivotal role in this field. As a critical factor influencing the perfor-
mance of SCs, self-discharge mechanism necessitates in-depth
analysis and understanding assisted with ML technology. The ro-
bust data processing and pattern recognition capabilities of ML
offer effective means to elucidate the complex mechanisms un-
derlying self-discharge phenomena and guide the optimal design
of SCs.

6. Summary and Prospective

In this review, we have presented a comprehensive review on re-
cent advancements in integrated energy harvesting/storage sys-
tems, with particular emphasis on the progress made in SCPS
based on TENG and SC. As a pivotal branch of AI technology,
ML has proven its utility not only in predicting device perfor-
mance but also in guiding material design through data analysis.
We have collected key parameters associated with TENG perfor-
mance from theoretical literatures and proposed a scheme for
predicting and guiding TENG design using ML. It is anticipated
that in the foreseeable future, ML will be instrumental in guid-
ing the development of TENG. In relation to SC, our focus lies
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in designing the most common and economic carbon materials
using ML. This involves incorporating parameters such as pore
size, functional groups, and test conditions into a learningmodel
to predict the lifespan of SC. This approach holds significant po-
tential for enhancing the energy storage capacity of SC. As the
self-discharge phenomenon frequently observed in SC devices
cannot be entirely eradicated, its impact is highly encouraged to
be mitigated. This paper also discusses the mechanism and pro-
cess of self-discharge based on equivalent circuit simulation. As-
sisted with ML analysis, the rate of self-discharge can be reduced
effectively by optimizing the design of electrodematerials, as well
as by regulating the electrolyte and separator. We anticipate that
with an increase in the amount of self-discharge research, there
will be more effective data to construct a complete synergistic
database for pursuing ML-enhanced SCPSs.
Despite the notable advancements in SCPS, we believe that the

swift progression of artificial intelligence will not only continue
to facilitate the development of the self-powered devices/systems
but also guide the ML-assisted design and optimization of mate-
rials and device structures. Until now, there are still some critical
concerns remaining to be explored within this domain.

6.1. Device Performance and Lifetime

The primary concern in the realm of energy-harvesting compo-
nents is their efficiency. The performance of TENG is heavily re-
liant on the surface charge density. Further research should focus
on enhancing this surface charge density, addressing issues re-
lated to air and dielectric breakdown, and optimizing dielectric
materials. Additionally, for energy storage devices, it is crucial to
further mitigate the self-discharge behavior of SC.
In contemporary practical applications, the longevity of

SCPSs’ components, especially TENG, has been a significant
challenge due to material degradation. Nevertheless, these self-
sustainable systems hold immense potential for future advance-
ments. Future research is imperative to enhance the performance
of each integrated unit, encompassing output power, capacitance,
cycling stability, and device lifespan. ML emerges as a promising
approach in optimizing structural design and material selection
in enhancing SCPS performance. The use of ML technology can
accelerate material screening and explore materials with higher
dielectric constants and higher surface charge densities. In the
future, ML can also be applied to reverse design of materials,
accelerating the development of new materials. In addition, ML
can be used to predict the long-term performance of materials
and identify the performance degradation path of materials in
advance. The current limited research on ML still focuses on op-
timizing the parameters of TENG structures. Moving forward,
there is an urgent need to delve deeper into research and develop
innovative materials and structures to bolster the performance
and sustainability of SCPSs.

6.2. Management Circuit

Currently, the impedance mismatch between TENG and energy-
storage devices results in suboptimal energy transfer efficiency.
Consequently, there is a pressing need to enhance conversion ef-
ficiency. Charge pumps and buck converters have demonstrated

high efficiency and versatility across various modes, marking
significant advancements in recent years. However, the energy
conversion efficiency of SCPSs remains low, necessitating fur-
ther investigation. To address this challenge, it is imperative to
develop and design more efficient power management circuits
for TENGs. By collecting data and leveraging ML techniques,
researchers can design more efficient energy management cir-
cuits. Considering the large amount of data to be collected and
the complexity of experiments, ML can be combined with circuit
simulation models to optimize the management circuits. By us-
ing circuit simulation software, such as LTspice, TENG can be
modeled as an equivalent circuit, typically represented by a se-
ries connection of a voltage source and a capacitor. The parame-
ters of electronic components in the circuit, such as capacitance,
inductance, resistance, and diode characteristics, can be adjusted
within simulation software. The software then calculates key per-
formance indicators of the management circuit, such as energy
storage efficiency, based on these adjustable parameters. By vary-
ing the combinations of these parameters, large datasets can be
generated for ML analysis. The resultingMLmodel can then pre-
dict and analyze the performance of management circuits with
different parameter combinations.

6.3. ML for the Entire System

While ML has been extensively researched and implemented
across various components of SCPS, it is plausible to predict that
its application will expand further in the future, particularly in
the design and management of the entire self-charging or self-
powered system. It is necessary to build a more intelligent SCPS
system. The integration ofML into these systems should facilitate
adaptive capabilities for their components, such as the ability to
modify TENG’s operational mode based on environmental fluc-
tuations and real-time data. This comprehensive approach to ML
will enhance the intelligence and adaptability of SCPS, thereby
optimizing the performance, responsiveness, and sustainability
of the entire system. In addition, future intelligent SCPS systems
may involve not only power management for a single device, but
also collaborative work among multiple systems. The distributed
SCPS network allows multiple self-charging systems to share
data and resources, optimizing overall efficiency through cross-
system collaboration. Applying ML to the overall system can en-
able nodes to share data, and the application of multi-objective
optimization algorithms can also achieve balance between mul-
tiple requirements and meet diverse application scenarios.

6.4. Application Scenarios

Utilizing ML, the application scope of SCPS can be signifi-
cantly expanded, encompassing intricate functions such as im-
age recognition and password unlocking. Furthermore, SCPS
can find utility in domains like smart homes, IoT, and wearable
devices, offering a sustainable power source for these technolog-
ically advanced systems. When SCPS is applied on the IoT, mul-
tiple functional devices may be included in the system. The en-
ergy collected by TENG may not be able to meet the long-term
continuous power supply requirements of the entire system. ML
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can be applied to analyze historical data of various load devices
and predict future electricity demand, achieving intelligent en-
ergy scheduling. Future research should aim to explore and de-
velop novel application scenarios, fully integrating ML technol-
ogy with SCPSs, thereby further broadening the potential appli-
cations of SCPSs.
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